archetypes.AA#
- class archetypes.AA(n_archetypes, *, max_iter=300, tol=0.0001, init='uniform', n_init=1, init_kwargs=None, save_init=False, method='nnls', method_kwargs=None, verbose=False, random_state=None)#
Archetype Analysis.
- Parameters:
- n_archetypes: int
The number of archetypes to compute.
- max_iterint, default=300
Maximum number of iterations of the archetype analysis algorithm for a single run.
- tolfloat, default=1e-4
Relative tolerance of two consecutive iterations to declare convergence.
- initstr, default=’uniform’
Method used to initialize the archetypes, must be one of the following: ‘uniform’, ‘furthest_sum’, ‘furthest_first’ or ‘aa_plus_plus’. See Initialization Methods.
- n_initint, default=1
Number of time the archetype analysis algorithm will be run with different initializations. The final results will be the best output of n_init consecutive runs.
- init_kwargsdict, default=None
Additional keyword arguments to pass to the initialization method.
- save_initbool, default=False
If True, save the initial archetypes in the attribute archetypes_init_,
- method: str, default=’nnls’
The optimization method to use for the archetypes and the coefficients, must be one of the following: ‘nnls’, ‘pgd’, ‘pseudo_pgd’. See Optimization Methods.
- method_kwargsdict, default=None
Additional arguments to pass to the optimization method. See Optimization Methods.
- verbosebool, default=False
Verbosity mode.
- random_stateint, RandomState instance or None, default=None
Determines random number generation of coefficients in initialization. Use an int to make the randomness reproducible.
- Attributes:
- archetypes_: np.ndarray
The computed archetypes. It has shape (n_archetypes, n_features).
- n_archetypes_: int
The number of archetypes after fitting.
- archetypes_init_np.ndarray
The initial archetypes. It is only available if save_init=True.
- similarity_degree_, A_np.ndarray
The similarity degree of each sample to each archetype. It has shape (n_samples, n_archetypes).
- archetypes_similarity_degree_, B_np.ndarray
The similarity degree of each archetype to each sample. It has shape (n_archetypes, n_samples).
- labels_np.ndarray
The label of each sample. It is the index of the closest archetype. It has shape (n_samples,).
- loss_list
The loss at each iteration.
- rss_, reconstruction_error_float
The residual sum of squares of the fitted data.
Methods
fit
(X[, y])Compute Archetype Analysis.
fit_transform
(X[, y])Compute the archetypes and transform X to the archetypal space.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
transform
(X)Transform X to the archetypal space.
- fit(X, y=None, **params)#
Compute Archetype Analysis.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Training instances to compute the archetypes. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous.
- yIgnored
Not used, present here for API consistency by convention.
- Returns:
- selfobject
Fitted estimator.
- fit_transform(X, y=None)#
Compute the archetypes and transform X to the archetypal space.
Equivalent to fit(X).transform(X).
- Parameters:
- Xarray-like of shape (n_samples, n_features)
New data to transform.
- yIgnored
Not used, present here for API consistency by convention.
- Returns:
- Andarray of shape (n_samples, n_archetypes)
X transformed in the new space.
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_output(*, transform=None)#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”, “polars”}, default=None
Configure output of transform and fit_transform.
“default”: Default output format of a transformer
“pandas”: DataFrame output
“polars”: Polars output
None: Transform configuration is unchanged
Added in version 1.4: “polars” option was added.
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- transform(X)#
Transform X to the archetypal space.
In the new space, each dimension is the distance to the archetypes.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
New data to transform.
- Returns:
- Andarray of shape (n_samples, n_archetypes)
X transformed in the new space.